fore, the noise figure F is given by
F=311+41L). (3)

This is the same formula as in [5]. Also, the equation relating ¢, L,
and F is

t=F/L. )
Substituting formula (2) into (4) yields

t=lz(1-—n)+n. (5)

Measured values for the mixer were
L; = L.L = 2.09
Fi = 1.585
a = 33.0
F; =282

(3.2 dB)
(2.0 dB)

(4.5dB).
Calculated values were

n = 0.591
1
L,
F, =286

[

(I —n) +n = 0.7855
(4.57 dB).

REFERENCES

[11 Y. Konishi and N. Hoshino. ‘‘100-GHz-band low-noise mixer,”
.I]nft' Electrical Communication Engineers Japan. Rep. MW 71-40,
uly 1971.

] P. J. Meier, ‘‘Two new integrated-circuit media with special ad-
vantages at millimeter wavelengths,” in ITEEE G-MTT Symp. Dig.,
1972. Dp. 221—223.

[8] ——. ““Equivalent relative permittivity and unloaded @ factor of
integrated finline.”’ Electron. Lett.. vol. 9, pp. 162—163, Apr. 1973.
[4] R. J. Mohr and 8. Okwit, “A note on the optimum source con-
ductance of crystal mixers.” IRE Trans. Microwave Theory Tech.,

vol. MTT-8, pp. 622629, Nov. 1960.

[5] M. R. Barber. ‘“Noise figure and conversion loss of the Schottky
barrier mixer diode,”” IEEE Trans. Microwave Theory Tech.. vol.
MTT-15, pp. 629-635, Nov. 1967.

6] Y. Konishi, “Low noise amplifier”

(in Japanese). Nikkankoogyo
Shinbun, Ltd.. 1969. :

Efficient Numerical Computation of the Frequency
Response of Cables Illuminated by an
Electromagnetic Field

CLAYTON R. PAUL, MEMBER, IEEE

Abstract—Computationally efficient numerical methods for deter-
mining the frequency response of uniform transmission lines
consisting of a large number of mutually coupled conductors in
homogeneous and inhomogeneous media, and illuminated by an
electromagnetic (EM) field are presented.

I. INTRODUCTION

Conductors connecting electronic subsystems on aircraft, missiles,
and ground electronic systems are generally grouped into large,
closely coupled cable bundles and it is not uncommon to find bundles
of over 100 conductors on modern avionics systems (for example,
F-4, F-111, and F-15 aircraft) [37]. Determination of the frequency
response of these large cable bundles illuminated by high-power
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radars as well as an electromagnetic pulse (EMP) from nuclear
detonations is becoming of increasing importance [17]. Computation
of the frequency response of these large bundles illuminated through
an aperture such as a landing gear door can be quite costly for only
one frequency. However, it is generally necessary to determine the
response for many frequencies so the concern here is to minimize
the per-frequency computation time for bundles consisting of a large
number of conductors. Flat pack and woven flat cables are being
used more frequently to connect electronic subsystems and it is not
uncommon to find over 35 mutually coupled conductors in these
types of cables [7].

Taylor et al. [2] considered the problem of two conductors
illuminated by a nonuniform electromagnetic (EM) field. For two
conductors, the per-frequency computation times are practically
minimal. For larger numbers of conductors, we encounter per-
frequency computation times which are functions of n3 for an (n 4 1)
conductor line so that reduction of the per-frequency computation
times becomes an important concern for large numbers of coupled
conductors and many computed frequencies.

We will cast the equations to be solved at each frequency into
particularly efficient forms as well as introduce computational pro-
cedures peculiar to these forms which allow an efficient solution.
Perhaps many of the results here will be considered fairly straight-
forward to obtain but our purposes will be to unify the particular
formulations and also point out some perhaps not so obvious tech-
niques for reducing computation times.

Consider an (n + 1) conductor uniform transmission line con-
sisting of (n 4 1) parallel lossless conductors of length £ imbedded
in a lossless nondispersive medium with the (n + 1)st conductor
designated as the reference conductor (usually a ground plane or
overall shield). The transmission line is described for the TEM
mode by the following 2n strongly coupled complex differential
equations [3], [5]:

V(z) 0. L V()
. = —jo 1)
i(z) C 0[] I(z)

where V(z) = (d/dz)V(z) and ,0; is the ¢ X j zero matrix. The
distance along the conductor structure and parallel to it is denoted
by z; the complex currents I(x) are directed in the direction of
increasing = and the 7th elements of the n X 1 vectors V(z),V;(x),
and I(z),I;(x) are the complex potentials (with respect to the
reference conductor) and currents, respectively, associated with the
tth conductor, 7 = 1,---,n. The parameter w is the radian frequency
of excitation under consideration and the n X n real symmetric
constant matrices L and C are the per unit length inductance and
capacitance matrices, respectively [3], [57.

The boundary conditions at the ends of the transmission line are
in the form of n ports and are characterizable by “generalized
Thevenin equivalents’’ as

V(O) = Eo - Rol(o)
V(L) = Eg + Rel(£)

(22)
(2b)

where Eo and Eg are n X 1 complex vectors of the equivalent open
circuit port excitations and Ry and Rg are n X n real symmetric
hyperdominant (and therefore positive definite) matrices repre-
senting passive termination networks.

Initially, we must solve (1) and then we must incorporate the
boundary conditions of (2). Differentiating the second equation in
(1) with respect to = and substituting the first we obtain

i(z) = —w?CLI(z). (3)

If we define a change of variables I(x) = T1,(z) where T is an
n X n nonsingular matrix and L.(z) represent ‘“modal currents’”
then we obtain

Ta(2) = —T-ICLTY, (x). (4)

We will show that it is always possible to diagonalize CL for lines
immersed in linear isotropic media and thus uncouple the mode
currents I, (z) by the similarity transformation T such that

T-ICLT = 4 (5)

where ¥2is an n X n diagonal matrix with real positive and nonzero
scalars v# on the diagonal, ie., [y2]; = v2 and [v2]; = 0 for
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i34, 44 =1-++n and we denote the element of a matrix M in
the 4th row and the jth column by [M];;. Thus the solution to (3)
can be written in terms of 2n undetermined constants as [37, [5]

1(z) = Tleiwa* + e~iora] (6a)
and since i(r) = —jwCV(z) we obtain
V(z) = —C1Ty[eforat — e7iwma ]
= CATy T {T[ ~ el ot + e=iovea=T]} (6b)

where o' and « are n X 1 vectors of 2n undetermined constants
and e is an n X n diagonal matrix whose entries are [ei»];; =
eiovm and [e/]; = Ofori = jand ¢,j = 1,o+em. |

It is quite natural to define a “‘characteristic impedance matrix”
Z. relating the forward and backward waves. From (6) it should be
clear that Z¢ = C'TyT-. If we write Y = joC and Z = joL then
Ze = Y1(YZ)Y2 which conforms, symbolically, to the scalar
characteristic impedance for the two-conductor line and if CL is
diagonalizable by the similarity transformation, T, as in (5), then
(YZ)2 = joTyT .

Incorporating the boundary conditions (2) into (6) one can
derive the following matrix equation:

—[C-'Ty — R,T] [C'Ty + R,T] ot
—~[C Ty + ReTleie  [C-ITy — ReTle e || o~

The most efficient method of solving m equations in m unknowns
is by Gaussian elimination and back substitution (LU decomposi-
tion) which requires (m3/3 -+ m? — m/3) operations (multiplica-
tions and divisions) or on the order of m3/3 for large m [6]. Thus
the solution of (7) for «* and o~ 4t each frequency requires a
minimum of (2n)3/3 or 8n3/3 operations. Once «* and e« are
determined from (7), then the potentials and currents at any point
on the line can be obtained from (6).

As an alternate approach, consider the use of the matrix chain
parameters of the line. The matrix chain parameters can be obtained
straightforwardly from (6) by eliminating «* and o~ to yield

v(£) du(L) (L) [| V(0) v(0)
= = ¢(L8) (8)
(L) Gu(L)  Paa(L) 1(0) 1(0)
where the n X n matrices ¢.;(£) are given by [5]
$u(8) = CITE+(£)TC $12(8) = —CTyE~(£)T

¢u(e) = —~TE~(£)y7T7IC  ¢n(2) = TE¥(8)T &)
and the n X n diagonal matrices E*(£) and E-(£) are defined by
E*(L) = §(errL 4 e™97€) = cosh (juvL) (10a)
E-(£) = 3(erL — e197L) = ginh (juyL). (10b)

From (8) and the boundary conditions of (2), one can derive in
a straightforward manner

[012(£) — du(L)Ry — Redoa(8) + Redar (£)RJI(0)
= Eg + [Redpn(L) — éu(L) 16
(L) = dn(L)E + [D2(L) — du(LIRJI(0).

(11a)
(11b)

Note that in this formulation, only n simultaneous equations in n
unknowns need be solved (1la) requiring #3/3 operations with
Gaussian elimination as opposed to 8rn3/3 operations to solve (7).
Of course since (7) is in a partitioned form, one can derive n simul-
taneous equations to solve in terms of either ot or «~ but formation
of these equations will require the inversion of an n X n matrix.
The voltages at the ends of the line V(0) and V(£) are obtainable
from the boundary conditions of (2) once the currents at the ends
of the line 1(0) and (L) are obtained from (11). Furthermore, the
voltages and currents at any point on the line V(z) and 1(z) can be
obtained from (8) by replacing £ with z once 1(0) is obtained from
(11a) and V(0) is obtained from (2a).
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The matrix chain parameter formulation has an additional advan-
tage. It allows us to consider transmission lines illumindted by an
incident EM field as a straightforward extension of the above results,
We represent the effects of the spectral components of the incident
field at a radian frequency w as distributed sources along the line
5o that n X 1 complex-valued source vectors V,(z) and L(z) are

incorporated into (1) as .

\7(:2:) n0n L V(x) vs(x)

. = —juw' + . (12)

|(I) C 20n l(x) |s(.‘l)
The determination of these equivalent sources is generally a difficult
matter [1]. One might wish to use the approximation that the
gource vectors for each line would be determined by sequentially
considering the field to illuminate only the reference conductor and
the 7th conductor for ¢ = 1,-++,n arid the solution for [V.(z)], =
Vo (z) and [1,(x)]; = I, (z) can be obtained as in [2]. Other
approximations are considered in [1].

The solution to (12) can be obtained quite easily by analogy to

the solutioh of state variable equations encountered in automatic
control and electrical circuit formulations [4] as

V(L) v(0) Vi(Z)
= ¢(£ / (& —3) dz
1(L) L(Z)
v(0) Vi(£)
= (L) +1..
1(0) 1,(8)
and ¢ (£) is the solution to the homogeneous set of equations in (1)

and given in (8)-(10) [4].
By defining from (13) and (8)

(13)

£
0,,(58) = / {ou(L — DIV(E) + o€ — D(E)} dF  (14a)
0

rL
Te) = / (P (L — Z)Ve(Z) + dol(& — T)(Z)} dE  (14b)
0

we can modify (11a) and (11b) to include these source funections
quite obviously by simply adding T.(£) to the right-hand side of
(11b) and addmg —V,(£) + Rel,(£) to the rlght-hand side of
(lla) This is gulte obvious since (13) shows that 1(£) is increased
by I3(£) and V() is increased by V,(£). Since from, (2b) Ep =
V(L) — Ryl (£), then Eg on the right-hand side of (11a) is to be
décreased by V(L) — R,els(.ﬁ) Thus (11a) and (11b) are modified
to consider incident fields by adding additional appropriate forcing
functions to their right-hand sides.

II. CABLES IN INHOMOGENEOUS MEDIA

Cable bundles are generally constructed of stranded wires coated
with a dielectric materidl to provide insulatiosi. This inhomogeneity
in the medium surrounding the wires precludes the existence of the
TEM mode due to the different phase velocities in the different
media (free space and insulation dielectric). However, we will con-
sider the TEM mode formulation to be applicable as an approxima-
tion similar to the approximation of including losses. This particular
problem also has application in predicting responses of flat flexible
cable and woven cables which are finding increased useage [7].

The per unit length matrices L and C will be symmetric and one
can show that C will be hyperdominant and therefore positive
definite [3], [5]. In this case, it is always possible to diagonalize
CL via an n X n real similarity transformation matrix T as in (5)
and moreover, this transformation will be of a numerically stable
type which is a quite necessary attribute for machine computation.
Since C is real symmetric, then there exists an n X n.real symmetric
orthogonal transformation matrix U such that U-ICU = A where
A is an n X n real diagonal matrix and U = U7 (we denote the
transpose of a matrix M by MZ). This is of course a well-known
result and is found in almost any text on matrix analysis. Further-
more, since C is positive definite, the eigenvalues of C, which are
the elements of the diagonal matrix A, are all positive (and real).
Thus we can quite easily (and meaningfully) form the square root
of the matrix A, AY2 and write
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A—lI2U—1CUA‘I/ZAIIZU—ILUAIIZ — Alle—lLUAllz

but U-1 = UT g0 that AY2UTLUAL? i real symmetric and can be
diagonalized by an n X = real symmetric orthogonal transformation
S such that

STAV2UTLUALZS = 2,
Thus we can identify T in (5) as

T = UA!28 (15)
and it is a simple matter to verify that
Tt = TTCL, (16)

The subroutine NrooT in the IBM Scientific Subroutine Package
(SSP) will perform this reduction.

We can cast (11a) and (11b) for this case into an attractive
computational form by defining auxiliary variables or mode currents
as 1(z) = Ti,(z). Then (11) can be written as

[Re*E*(2) + Re*E~(£)v'Re* + vE~(£) -+ E*(£)Re*1n(0)
= + VH(£) — Re*L* (&) + [EH(€) + Re*E~(£)y1IE* — Eg*
(17a)
L.(L) = [E*(£) + E~(L)y ' Re* 1. (0) — E~(L) ¢y E* + I,*(£).
(17b)

To obtain (17) we simply substitute the change of variables 1{z) =
T, (z) along with (8)-(10) into (11) and premultiply (11a) by
TT and (11b) by T-! = TTC™? [the identity in (16)]. The algebra
is straightforward and omitted here. We also find it gonvenient
from a notatlonal standpoint to define V.*(£) = TV, (£) and
L*(£) = Trc, (£). Similarly, we have defined R¢* = T7TR,T,
Rg* = TTReT, E* = TTE,, and Eg* = TTEz for notational con-
venience. It is quite natural to do this since defining mode currents
as 1{z) = Tl,{z) and mode voltages as Vn.(z) = TTV(z) it is
clear from (6) [and using the identity in (16)] that the modes,
I.(z) and V. (x), consist of 2n uncoupled waves and the boundary
conditions of (2) in terms of mode quantities become

Vn(0) =

vm(£) =

EO* - RO*Im (0)

Eg* + Ro*I, (£).

(18a)
(18b)

Thus E* and Eg* are the equivalent sources for the modes and
Ro* and Rg* are the resistive terminations for the modes.

For numerical computation, (17a) requires n®/3 operations to
solve with n? operations required to form 1(0) = TI,(0). In addi-
tion, forming (17) is straightforward since E*(£), E~(£), and ¢
are diagonal matrices. Also ! is easily determined since vy is
diagonal and the determination of V.*(£) and I.*(£) on the right-
hand side of (17a) is also quite easily determined. For example,
from (14), (9), and (10) and utilizing the relation T-! = TTC—
in (18)

V4(L) = TT f {CITEH(& — 2)TCV,(3)
0
— CITyE~(& — $)TU,(2)} di

£
= / {EH(L — £)TTV,(Z) — vE~ (£ — 2)TTC (%)} di
0

(19a)
£
I*(£) = TIC f {—TE~(£ — 2)y'TICV,.(Z)
0
+ TE*(L& — 2)TU,(%)} d2
£
=f {—E~(£ — 3)yITTV.(Z)
0
+ E+(& — 2)TTCU,(F)} d3. (19b)

Normally, one determines C by writing the potentials on the con-
ductors in terms of the charges on the conductors as Vv = C™lQ
and thus it is unnecessary to invert C.

Therefore the equations which require the majority of the com-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, APRIL 1974

putational expense, (11a) which for this case is (17a), can be
solved with perhaps minimal effort as opposed to other approaches
where one does not condition the equations, i.e., cast them into an
equivalent but more desirable computational form.

III. CABLES IN HOMOGENEOUS MEDIA

The current trend on many modern avionics systems is to route
cable bundles in conduit to protect them from incident field effects.
One may wish to approximate this situation as n conductors im-
bedded in a homogeneous dielectric whose relative permittivity is
that of the wire insulation or some measured effective relative
permittivity [17 and we may wish to determine the effects of
currents induced on the conduit [the (n -+ 1)st conductor] by the
incident field when portions of the conduit pass apertures.

Here we may utilize the important fact that for a homogeneous
medium

LC=CL = L I, (20)
22

where I, is the n X » identity matrix and v is the phase velocity in
the surrounding medium » = 1/(ue)t2 [87]. In this case, the matrix
chain parameters become [T = I, and y2 = 1/2L,, in (5)]

¢u(L) = jle*(L) + e (L)

$12(L) = —3[e*(L) — e (L)]Z¢

Pu(L) = —3et (L) ~ e (£)]Z

$2(L) = 3[e*(L) + e~ (L) (21)

where the complex scalars ¢*(£) and ¢ (£) are given by et (£) =
eiedlv and ¢~ (L) = e#«L/» and the characteristic impedance matrix
is given by Z¢ = oL [3], [56].

From (14), we obtain

A £ .
V. (£) =/ {ilet (& — Z) + e (£ - Z)IV.(Z)
0
—3let(& —2) — e (£ — £)JZch(B)} dF  (22a)
£
1) =/ {—3[et (& — Z) — e (& — £)]ZcVL(E)
0

+ ilet (& — Z) + e (& — B)(Z)} dB.  (22D)

Incorporating the boundary conditions, it is a straightforward
matter to derive from (11) with ¢;; in (21) and including V.(£)
A B .
and 1;(£) as deseribed previously

[«(Rg + Ro) + B(RgZc™Ro + Z¢) J1(0)
= 7(—V.(8) + ReL (L)) + vEe + [ol. + BReZoE

-8 Z¢'Ey
v

(23a)

1(£) - [EL. + £ Zc‘IRn] 10) +1.(8) (23b)
¥ Y

where the complex scalars a, 8, and v are defined as a = (e2 + 1),
B =(e2—1),v = —2" and e = (¢*)™

Again the major computational effort is consumed in solving the
n equations in #» unknowns in (23a). Since Rg and Ry are symmetrie
positive definite, then one can show that (Ro 4+ Rg) will be sym-

metric positive definite and therefore nonsingular. Thus we may
form by premultiplying (23a) by (Rg + Re)™!

[al, 4+ B(Rg + Ro)(ReZo 'Ry + Z¢) J1(0)
= v(Rg + Ro)"[—V,(&) + ReL(£)] + v(Rg + Ro)Eg

+ (Re + Ro)[ad, + SReZc ™ |Eo. (24)

If we can find an n X n nonsingular matrix M such that a change

of variables 1(0) = MI*(0) in (24) yields

M [(Rg + Ry) 1 (ReZ¢'Ro + Z¢) M = 8 (25)
and 0 is an n X n diagonal matrix, then the equations in (24) in
terms of 1*(0) will be uncoupled requiring a trivial amount of
computation to solve for 1*(0) and only n? operations to recover
1(0) through 1{0) = Mi1*(0). Thus if it is possible to uncouple the
equations in this manner, then we do not need to solve large numbers
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of simultaneous equations at each frequency. Unfortunately, it is
not always possible "o uncouple the equations as the following
example shows:

10 52 2
Ro = Re = Ze =
01 0 3 2 52

Even if under certain cases it is possible, theoretically, to diagonalize
the coefficient matrix in (24), such a transformation can easily lead
to numerical instabilities unless it is of a numerically stable type
such as an orthogonal transformation [6].

Although it is not always possible to obtain 0 in (25) in diagonal
form, it is always possible to find a very stable transformation M
such that 6 is in lower (or upper) Hessenberg form [67]. The lower
Hessenberg form of 8 is such that a large number of the entries in
0 are zero, i.e., [01;; =0,{=1,+-+n — 2, and j = ({ + 2),+++,n.
Thus the Hessenberg form is in “almost’’ lower triangular form.

Gaussian elimination utilizes row operations to reduce the coeffi-
cient matrix to lower triangular form and then back substitution
is utilized to find the solutions. The majority of the operations are
consumed in the reduction to lower triangular form.

With the transformation to Hessenberg form, (24) becomes

[al. + 8011*(0) = yM~1(Rg + R)[—V.(2) -+ Reh.(€)]
+ ¥yM(Rg + Ro)7Eg + M (Rg + Ro)™*
'[aIn + BR,QZc_leo.

(26)

(27)

Then one can employ row operations to reduce (27) to lower tri-
angular form with back substitution being utilized to solve for the
elements of 1¥(0). 1(0) can then be obtained from 1(0) = MI*(0).

Solving (24) with Gaussian elimination and back substitution
requires on the order of n3/3 per-frequency operations for large n.
Solution via the reduction to Hessenberg form [solution of (27)]
requires only [n2/2 + n/37] operations for triangularization, [n2/2 +
n/27] operations for back substitution, and n? operations to form
1(0) = MI*(0) so that the total number of per-frequency operations
has been reduced from on the order of n3/3 with Gaussian elimination
to 2n2 + n for the Hessenberg reduction; a substantial savings for
large n. Furthermore, the reduction to Hessenberg form is frequency
independent and only needs to be performed once at the beginning
of the frequency iteration.

If each line is connected to the reference conductor only through
a single resistance (a very common situation), then R, and Rg will
be diagonal and (R + Rg)!is trivial to obtain. M~ is quite simple
to obtain as a sequence of row operations {67 so that formation of
(27) is not really so difficult.

Thus we are able to reduce the number of per-frequency opera-
tions in the homogeneous medium case from on the order of n3 to
on the order of n>—a substantial savings for large .

IV CONCLUSION

Numerically efficient methods of computing the {frequency
response of multiconductor transmission lines in homogeneous and
inhomogeneous media illuminated by an EM field are presented.
The formulations allow an efficient determination of the frequency
response for cables consisting of a large number of coupled con-
ductors with various port load conditions. The transformations used
are numerically stable with respect to roundoff error and are fre-
quency independent so that they need be determined only once at
the beginning of the frequency iteration.
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On the Calibration Process of Automatic Network
Analyzer Systems

STIG REHNMARK

Abstract—Formulas are presented for the direct calculation of the
scattering parameters of a linear two-port, when it is measured by
an imperfect network analyzer. Depending on the hardware con-
figuration of the test set, the measurement system is represented by
one of two flowgraph models. In both models presented, leakage
paths are included. The error parameters, i.e., the scattering param-
eters of the measuring system, are six respective ten complex num-
bers for each frequency of interest. A calibration procedure, where
measurements are made on standards, will determine the error
parameters. One of many possible calibration procedures is briefly
described. By using explicit formulas instead of iterative methods,
the computing time for the correction of the scattering parameters of
the unknown two-port is significantly reduced. The addition of
leakage paths will only have a minor effect on computational com-
plexity while measurement accuracy will increase.

An important property of automatic network analyzers is thas
system errors can be brought to a minimum by a calibration process
[17. Two different measuring systems, represented by flowgraph
models, will be considered in this short paper. Fig. 1 shows a sche-
matic of the hardware configuration, with the digital computer ex-
cluded.

Which model to apply depends on whether the coaxial switch S,
is used or not. If the switch S, is not included, the device under test
has to be manually turned to be measured from both directions. In
this case, the flowgraph mode! presented by Hand [2] is applicable.
This model is shown in Fig. 2.

s, S19, Su, and sy are the scattering parameters of the device
under test. en—es: are parameters representing errors in the system.
By making measurements on standards, the error parameters can be
determined. Three reflexion measurements with s, = 0 are enough
to determine e, €01, and er:. This can be done with a perfeet termin-
ation, a direct and an offset short. A sliding load can simulate the
perfect termination. A transmission measurement with sy = 0
will give es. €22 and es; can then be determined if s» = 82 = 1 and
s$u = s = 0, i.e., a through connection. A thorough description of
the calibration process is given in [27. Another similar calibration
method is described in [37].

Device under test

Test Umt L P, Network
Analyzer
Sa
Sweep
Oscillator 1
- 2
N Sp
. AT | Frequericy
T Converter
— -
' »
Fig. 1. Hardware configuration.
€30
RefereEe 1 S, eazl Trans’r‘mssmn
A= > T
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Reflection o0 B n 22 2
R
€01 4 Si2 4
Unknown Return
Fig. 2.

Signal flowgraph of system model (switch S, not included in
test unit).
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