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fore, the noise figure F is given by

F = +(1 +L). (3)

This isthesame formula asin [5]. Afso, theequation relating t,L,

and F is

t=F/L. (4)

Substituting formula (2) into (4) yields

t=; (l–n)+n. (5)

.Measured values for the mixer were

L,=L,L =2.09 (3.2 dB)

Fi~ = 1.585 (2.0 dB)

~ == 33.0

F, =2.82 (4.5 dB) .

Calculated values were

n = 0.591

tR~(l–n.)+n=O.7855

F, =2.86 (4.57 dB).
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Efficient Numerical Computation of the Frequency

Response of Cables Illuminated by an

Electromagnetic Field

CLAYTON R. PAUL, MEMBER, IEEE

Absfracf—Computationally efficient numerical methods for deter-

mining the frequency response of uniform transmission lines

consisting of a large number of mutually coupled conductors in

homogeneous and inhomogeneous media, and illuminated by an

electromagnetic (EM) field are presented.

I. INTRODUCTION

Conductors connecting electronic subsystems on aircraft, missiles,
and ground electronic systems are generally grouped into large,

closely coupled cable bundles and it is not uncommon to find bundles
of over 100 conductors on modern avionics systems (for example,
F-4, F-1 11, and F-I5 aircraft) [3]. Determination of the frequency
response of these large cable bundles illuminated by high-power
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radars w well as an electromagnetic pulse (EMP ) from nuclear

detonations is becoming of increasing importance [1]. Computation
of the frequency response of these large bundles illuminated through

an aperture such w a landing gear door can be quite costly for only

one frequency. However, it is generally necessary to determine the
response for man y frequencies so the concern here is to minimize

the per-frequency computation time for bundles consisting of a large
number of conductors. Flat pack and woven flat cables are being
used more frequently to connect electronic subsystems and it is not

uncommon to find over 35 mutually coupled conductors in these
types of cables [7].

Taylor et al. [2] considered the problem of two conductors

illuminated by a nonuniform electromagnetic (EM ) field. For two

conductors, the per-frequency computation times are practically

minimal. For larger numbers of conductors, we encounter per-
frequency computation times which are functions of ns for an (n + 1)

conductor line so that reduction of the per-frequency computation

times becomes an important concern for large numbers of coupled
conductors and many computed frequencies.

We will cast the equations to be solved at each frequency into
particularly efficient forms as well as introduce computational pro-
cedures peculiar to these forms which allow an efficient solution.
Perhaps many of the results here will be considered fairly straight-
forward to obtain but our purposes will be to unify the particular

formulations and also point out some perhaps not so obvious tech-

niques for reducing computation times.

Consider an (n + 1 ) conductor uniform transmission line con-

sisting of (n + 1 ) parallel Iossless conductors of length s imbedded
in a lossless nondispersive medium with the (n + 1 )st conductor

designated as the reference conductor (usually a ground plane or

overall shield ). The transmission line is described for the TEM

mode by the following 2n strongly coupled complex differential
equations [3], [5]:

[::::1=-’WE3:3 ‘1)
where *(z ) = (cZ/dZ ) V (x ) and ,Oi is the i X j zero matrix. The

distance along the conductor structure and parallel to it is denoted

by x; the complex currents l(z) are directed in the direction of
increasing x and the ith elements of the n X 1 vectors V(z) ,Vi (z),
and I(z) ,It (z ) are the complex potentials (with respect to the

reference conductor ) and currents, respectively, associated with the
ith conductor, i = 1,. . . ,n. The parameter w is the radian frequency

of excitation under consideration and the n X n real symmetric
constant matrices L and C are the per unit length inductance and

capacitance matrices, respectively [3], [5].
The boundary conditions at the ends of the transmission line are

in the form of n ports and are characterizable by “generalized
Thevenin equivalents” as

V(0) = E, – R,I(0) (2a)

V(S) = E$ +R~l(.Q) (2b )

where Eo and E$ are n X 1 complex vectors of the equivalent open
circuit port excitations and RO and RQ are n X n real symmetric

hyperdominant (and therefore positive definite) matrices repre-

senting passive termination networks.
Initially, we must solve (1) and then we must incorporate the

boundary conditions of (2). Differentiating the second equation in
(1) with respect to z and substituting the first we obtain

i(z) = –u2CLI (z). (3)

If we define a change of variables I(z) = Tin(z) where T is an
n X n nonsingular matrix and L(z) represent “modal currents>>
then we obtain

~fi (z) = –CNT–lCLTL (z). (4)

We will show that it is always possible to diagonalize CL for lines
immersed in linear isotropic media and thus uncouple the mode

currents ~~ (z ) by the similarity transformation T such that

T–’CLT = Y2 (5)

where Y2 is an n X n diagonal matrix with real positive and nonzero

scalars ?? on the diagonal, i.e., [Y21ii = -Y# and [Y21ii = O for
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~ # ~“, ~,j = 1, . . . ,n and we denote the element of a matrix k in

the ith row and the jth column by [M]ij. Thus the solution to (3)

can be written in terms of 2n undetermined constants as [3], [5]

l(z) = T[e~@y” a+ + e-~”~ a– j (6a)

and since i(z) = —jaCV (z ) we obtain

v(z) = – c–lTY[ej*~ ~+ – e–~”~w]

= C-’TyT-l {T[ – ei~~’ IX+ + e-~”yz a-]) (6b)

where a+ and a– are n X 1 vectors of 2n undetermined constants
and e~”~ is an n X n diagonal matrix whose entries are [e~”~]~i =
~i.rw and [i+w]ii = O for i # j“ and i,j = 1, . . . ,n.

It is quite natural to define a “characteristic impedance matrix”
Zc relating the forward and backward waves. From (6) it should be

clear that ZC = C-lT yT–l. If we write Y = @C and Z = @L then
ZC = Y–l (YZ )1/2 which conforms, symbolically, to the scalar

characteristic impedance for the two-conductor line and if CL is
diagonalizable by the similarity transformation, T, as in (5 ), then
(YZ )’/’ = @T7T-’.

Incorporating the boundary conditions (2) into (6) one can
derive the following matrix equation:

[

–[C-’TY – R,T] 1[1[C-lTY + RoT] a+

– [C-’Ty + RST]e~@~$ [C-’Ty – R~T]e-~”~~ rZ-

[1

EO
.. (7)

Es

The most efficient method of solving m equations in m unknowns

is by Gaussian elimination and back substitution (.L U decomposi-

tion ) which requires (ins/3 -t mt – m/3) operations (multiplica-

tions and divisions ) or on the order of ins/3 for large m [6]. Thus
the solution of (7) for a+ and a– at each frequency requires a

minimum of (2n ) 8/3 or 8ns/3 operations. Once a+ and a– are
determined from (7), then the potentials and currents at any point

on the line can be obtained from (6).
As an alternate approach, consider the use of the matrix chain

parameters of the line. The matrix chain parameters can be obtained

straightforwardly from (6) by eliminating a+ and a– to yield

[::::1=[::::::l[::::l=’(s)[::::l‘8)
where the n X n matrices ~,i (S ) are given by [5]

4U (~) = C-’TE+ (S )T-IC o,, (~) = – C-lTyE- (S )T-l

o,, (S) = –TE- (S ) y-lT-’C +,2 (=C) = TE+(s )T-’ (9j

and the n X n diagonal matrices E+(Q) and E– (C ) are defined by

E+(S) = ~ (e~~?s + e-~~y~) = cosh ( jay~ ) (lOa)

E-(S) = ~ (e~@~~ – e-)ay~) = sinh ( joy Q ). (lOb)

From (8) and the boundary conditions of (2), one can derive in
a straightforward manner

[0,,(S) – 0,, (S)RO – RJY$22($) + Rso,, (Q)Ro]I (0)

= Es + [Rs@21(S) – 4w(-S)IEO (ha)

I(S) = 021(S)E0 + [+2,(S) – 421(s) Ro]I(0). (llb)

Note that in this formulation, only n simultaneous equations in n
unknowns need be solved (11a) requiring n3/3 operations with
Gaussian elimination as oppoeed to 8n3/3 operations to solve (7).
Of course since (7) is in a partitioned form, one can derive ~ simul-
taneous equations to solve in terms of either a+ or a– but formation
of these equations will require the inversion of an n X n matrix.
The voltages at the ends of the line V(O) and V(S) are obtainable

from the boundary conditions of (2) once the currents at the ends

of the line l(O) and l(Q) are obtained from (11). Furthermore, the
voltages and currents at any point on the line V(z) and I(z) can be
obtained from (8) by replacing s with z once I(O) is obtained from
(ha) and v(0) is obtained from (2a).
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The matrix chain parameter formulation has an additional advan-

tage. It allows ,US to consider transmission lines illuminated by an
incident EM field se a straightforward extension of the hbove results.

We represent the effects of the spectral components of the incident

field at a radian frequency, u as distributed sources along the line

so that n X 1 complex-valued source vectors V,(x) and 1,(z) are

incorporated into (1) as

The determination of these equivalent sources is generally a difficult
matter [1]. One might wish to use the approilmation that the
source vectors for each line would be determined by sequentially
considering the field to illuminate only the reference, conductor and
the ith conductor for i = 1,-.0, n arid the solution for [V.(x)]. :

l’s, (z) and [1, (z) ]i = I,j (z) can be obtained as in [2]. Other

approximations are considered in [1].
The solution to (12) can be obtained quite eaeily by analog~y to

the solution of state variable equations encountered in automatic
control and electrical circuit formulations [4] w

and o(S) is the solution to the homogeneous set of equations in (1)

and &en in (8)–(10) ~4]. -
By defining from (13) and (8)

/

s

t,(s) = {011(s – 2) V*(2) + 012(s – 2)1s($)
o

“s

1(s) =
J

{021(s – 2) VS(2) + 022(Q – 2)1s(2)
o

d: (14a)

dt (14b)

we can modify (11a) and (1 lb ) t% include these source functions
quite obviously by simply adding 1.(C) to the right-hand side of
(llb ) and adding – V, (S ) + R~?, (S ) to the right-hand side of
(112). This is ~uite obvious since (13J shows that l($) is increased

by L (.S ) and V.(4) is increased by V,(S). Since from, (2b) Ed: =
v(S) – R&l(S), then E~~on the right;hand side of (1 la) is to be

decreased by ~. (S ) – R&t,(S). Thus (ha) and (llb ) are modified

to consider incident fields by ~ding additional appropriate forcing

functions to their right-hand sides.

II. CABLES IN INHOMOGENEOUS MEDIA

Cable bundles are generally constructed of stranded wires coated
with a dielectric material to provide instdatiori. This inhornogeneit y
in the medium surrounding, the wires precludes thd existence of the
TEM mode due to the different phase velocities in the different

media (free space and insulation dielectric ). However, we will con-
sider the TEM mode formulation to be applicable as an approxi ma-

tion similar to the approximation of including losses. This particular
problem also has application in predicting responses of flat flexible

cable and woven cables which are finding increased useage [7].
The per unit length matrices L and C will be symmetric and one

can show that C will be hyperdominant and therefore positive
defiiite [3], [5]. In this case, it is always possible to chagordize

CL via an n X n real similarity transformation matrix T as in (5)
and moreover, this transf oimation will, be of a numerically ,stable
type which is a quite necessary attribute for machine computation.
Since C is real symmetric, then there exists an n X n. real symlnetric
orthogonal transformation matrix U such that U-lCU = A where
A is an n X n real diagonal matrix and U–l = UT (we denote the

transpose of a matrix M by MT). This is of course a well-known
result and is found in almost any text on matrix analysis. Furtherm-
ore, since C is positive definite, the eigenvalues of C, which are
the elements of the diagonal matrix A, are all positive (and real).
Thus we can quite easily (and meaningfully) form the square root

of the matrix A, A1lZ, and write
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A–1/2U–lCUA–1/2A1/ZU–ILUAI/2 = ~1/2u–lLuA1/2

but U-l = U2’ so that A1/2U~LUA11Z is real fiymmetric and can be
diagonalized by an n X n real symmetric orthogonal transformation

S such that

S~A1[ZU~LUA1izS = ~z,,

Thus we can identify T in (5) as

T = UA1%3 (15)

and it is a simple matter to verify that

T-’ = TTC–l. (16)

The subroutine NROOT in the IBM Scientific Subroutine Package

(SSP) will perform this reduction.

We can cast (ha) and (llb ) for this case into an attractive

computational form by defining auxiliary variablee or mode currents

as l(x) = Tim(z). Then (11) can be written as

[R~*E+(&) -t- R&*E-(.$) Y-’Ro* + yE-(&) -t E+(&) Ro*]lnz(0)

= + W“ (S ) – ~“1,’ (S ) + [E+(S) + ~* E- (S) y-l]E,,* – Es*

(17a)

1~ (S ) = [E+(s) + E-(s) ~-lR,*]l* (0) – E--(s) T-lE,* + l.” (s).

(17b)

To obtain (17) we simply substitute the change of variables i (z) =
T[_ (z) along with (8)-(10) into (11) and premultiply (ha) by

T~ and (llb ) by T-l = T~C-l [the identity in (16)]. The algebra

is straightforward and omitted here. We also find it ~onvenient
from a notational standpoint to define V6* (S ) = T~v. (S ) and

i.” (S) = T~C–l~ (S ). Similarly, we have defined R,” = T~&T,

R~* = T~R$T, E,” = T~E,, and Es” = T~Ed: for notational con-
venience. It is quite natural to do this since defining mode currents
as I(z) = Tl~ (x) and mode voltages M V-(Z) = TW(X) it is
clear from (6) [and using the identity in (16)] that the modes,
l-(z) and V~ (z ), consist of 2n uncoupled waves and the boundary

conditions of (2) in terms of mode quantities become

V~ (0) = Eo* – R,* Ire(0) (18a)

V~(S) = Es* + R2*Im(d3). (18b)

Thus E,” and Es’ are the equivalent sources for the modes and

Ro* and Rs’ are the resistive terminations for the modes.
For numerical computation, (17a) requirw n3/3 operations to

solve with nz operations required to form I(O) = Tl_ (O ). In addi-
tion, forming (17 ) is straightforward since IE+ (S ), E– (S ), and y
are diagonal matrices. Also y–l is easily determined since y is
diagonal and the determination of V,”(S) and L* (.S ) on the right-

hand side of (17a) is also quite easily determined. For example,
from (14), (9), and (10) and utilizing the relation T-l = T~C–l

in (1S)

[

s

v,* (s) = T~ {C-lTE+(s – ;)T-1CV8 ($)

o

– C-’TyE-(& – $) T-’i.(~) ) d$

—.
/

S {E+(s – ~)T~V.(8) – y&(Jj – ~)T~C-ll.($) ) d;

o

(19a)

/

s

1,’ (S) = T~C–I { –TE-(& – $) ~-lT-’C’V,(;)

o

+ TE+(J3 – ;) T-’I. (i?) ] &

/

z

. { –E-(J3 – $?)y-’TW. (;)
o

+ E+(J3 – ;) T~C-ll. (;)] d;. (19b)

Normally, one determines C by writing the potentials on the con-

ductors in terms of the charges on the conductors as V = C-lQ
and thus it is unnecessary to invert C.

Therefore the equations which require the majority of the com-

putational expense, (1 la) which for this case is (17a), can be

solved with perhaps minimal effort as opposed to other approached
where one does not condition the equations, i.e., caet them into an

equivalent but more desirable computational form.

III. CABLES IN HOMOGENEOUS MEDIA

The current trend on many modem avionics systems is to route

cable bundles in conduit to protect them from incident field effects.
One may wish to approximate this situation as n conductors im-

bedded in a homogeneous dielectric whose relative permittivity is

that of the wire insulation or some measured effective relative
permittivity [1] and we may wish to determine the effecte of

currents induced on the conduit [the (n + 1 )st conductor] by the

incident field when portions of the conduit pass apertures.
Here we may utilize the important fact that for a homogeneous

medium

LC=CL=; I” (20)

where In is the n X n identity matrix and v is the phase velocity in
the surrounding medknn w = 1/ (pc)lfi~ [8]. In this case, the matrix
chain parameters become [T = In and yj = l/&~ in (5)]

c$u(S) = ~[e+(~) + e-( J2)]I~

412($) = –~[e+(~) - e-(J3)]Zc

421 (S) = – *~e+(S ) – e-(S) ]ZC-’

%2(S) = Ke+(.S) + e-(S)]L (21 )

where the complex scalars e+(S) and e-(S) are given by e+(S) =
ei~~la and e– (Q ) = e–~.slv, and the characteristic impedance matrix

is given by Zc = OL [3], [5].
From (14 ), we obtain

/

k

%(s) = o {+[e+($ – 2) +e--(~ - S)] V.(2)

– :[e+(~ –:) - e-(i — fi)]ZCI~(;) ) d; (22a)

/

2

t.(c) = (–~[e-~(~ – ~) – e-(J3 – ~)]ZO-1VS(8)
o

-t- ii[e+(s – $) -1- e-(~ – ~)]1.($)} d;. (22b)

Incorporating the boundary conditions, it is a straightforward

mat~er to derive from (11) with +;j in (21) and including V.(S)
and I.(S) as described previously

[cz(Rs + R,) + 6( RcZc-’Ra + ZC)]I(0)

= ~ (–G. (S ) + Rs~.(Q ) ) i- Ms + [d. + @R&C-’lEO (23a)

1(S) = g ZC–lEO --
[ 1

:In + ~ ZC-IR, l(O) +ts(eC) (23b)
-r 7 Y

where the complex scalars a, & and T are defined m C2 = (e2 + 1),

B = (ez – 1), -y = –2e+, and e* = (e+)j.
Again the major computational effort is consumed in solving the

n equations inn unknowns in (23a). Since RC and Ra are symmetric

positive definite, then one can show that (Ro + R&) will be sym-
metric positive definite and therefore nonsingolar. Thus we may
form by prenmltiplying (23a) by (R$ + R,)-’

[d” + 13(Rg + RO-’(RSZ.-’R, + Z.)~1(0)

= 7(RC + RO)–l[–;. (S) + I&s(s)] + V(RS + RO)–l&

+ (Rs + RO)-’[CZL + j3RSZC-llE0. (24)

If we can fiqd an n X n nonsingukr matrix M such that a change
of variables I(O) = MI*(O) in (24) yields

M-l[(R& + R,)-’(R~Zc-lRo + Zc)]M = 0 (25)

and o is an n X n diagonal matrix, then the equations in (24) in
terms of 1*(O) will be uncoupled requiring a trivial amount of
computation to solve for [* (0) and only nz operations to recover
I(0) through I(0) = MI’(O). Thus if it is possible to uncouple the

equations in this manner, then we do not need to solve large numbers
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of simultaneous equations at each frequency. Unfortunately, it is

not always possible ‘o uncouple the equations as the following

example shows:

‘o=c :1“=c:1‘C=r:; ‘2’)
Even if under certain cases it is possible, theoretically, to dlagonalize

the coefficient matrix in (24), such a transformation can easily lead

to numerical instabilities unless it is of a numerically stable type
such as an orthogonal transformation [6].

Although it is not always possible to obtain 8 in (25) in diagonal
form, it is always possible to find a very stable transformation M

such that o is in lower (or upper) Hessenberg form [6]. The lower
Hessenberg form of 8 is such that, a large number of the entries in

o are zero, i.e., [O]ii = O, i = 1,...,n – 2, and,i = (~ -1- 2), ”””,K
Thus the Hessenberg form is in “almost” lower triangular form.

Gaussian elimination utilizes row operations to reduce the coeffi-

cient matrix to lower triangular form and then back substitution

is utilized to find the solutions. The majority of the operations are
consumed in the reduction to lower triangular form.

With the transformation to Hessenberg form, (24) becomes

[aIn + @e]I*(0) = ~M-’(R~ + R,)-’[–~.(J3) + R&~(&)]

+ -yM-’(R~ + R,)-’ES + M--l(RQ + RO)-’

. [d. + 13RSZ,-l]E,. (27 )

Then one can employ row operations to reduce (27) to lower tri-
angular form with back substitution being utilized to solve for the

elements of 1“ (0). 1(0) can then be obtained from l(0) = MI*(0).

Solving (24 ) with Gaussian elimination and back substitution

requires on the order of ns/3 per-frequency operations for large n.

Solution via the reduction to Hessenberg form [solution of (27)]

requires only [nz/2 + n/3] operations for triangu[arization, [n2/2 +
n/2 ] operations for back substitution, and nz operations to form

i(O) = MI*(O) so that the total number of per-frequency operations
hae been reduced from on the order of nt/3 with Gaussian elimination

to 2n2 + n for the Hessenberg reduction; a substantial savings for
large n. Furthermore, the reduction to Hessenberg form is frequency

independent and only needs to be performed once at the beginning
of the frequency iteration.

If each line is connected to the reference conductor only through
a single resistance (a very common situation), then RO and RQ wfll

be diagonal and (Ro + R~ )-’ is trivial to obtain. M-’ is quite simple
to obtain se a sequence of row operations [6] so that formation of

(27 ) is not really so difficult.
Thus we are able to reduce the number of per-frequency opera-

tions in the homogeneous medlmn case from on the order of nt to
on the order of ni—a substantial savings for large n.

IV CONCLUSION

Numerically efficient methods of computing the frequency

response of multiconductor transmission lines in homogeneous and

inhomogeneous media illuminated by an EM field are presented.
The formulations allow an efficient determination of the frequency

response for cables consisting of a large number of coupled con-

ductors with various port load conditions. The transformations used
are numerically stable with respect to roundoff error and are fre-

quency independent so that they need be determined only once at
the beginning of the frequency iteration.
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On the Calibration Process of Automatic Network

Analyzer Systems

STIG REHNMARK

Absfract—Formulas are presented for the direct calculation of the

scattering parameters of a linear two-port, when it is measured by

an imperfect network analyzer. Depending on the hardware con-

figuration of the test set, the measurement system is represented by

one of two flowgraph models. In both models presented, leakage

paths are included. The error parameters, i.e., the scattering param-

eters of the measuring system, are six respective ten complex mun-

bers for each frequency of interest. A calibration procedure, where

measurements are made on standards, will determine the error

parameters. One of many possible calibration procedures is briefly

described. By using explicit formulas instead of iterative methods,

the computing time for the correction of the scattering parameters of

the unknown two-port is significantly reduced. The addition of

leakage paths will only have a @nor effect on computational com-

plexity whale measurement accuracy wilf increase.

An important property of automatic network analyzers is tha;
system errors can be brought to a minimum by a calibration process
[1]. Two different measuring systems, represented by flowgraph

models, will be considered in this short paper. Fig. 1 shows a sche-

matic of the hardware configuration, with the digital computer ex-

cluded.

Which model to apply depends on whether the coaxial switch EL

is used or not. If the switch S. is not included, the device under test

has to be manually turned to be measured from both directions. In

this case, the flowgraph model presented by Hand [2] is applicable.

This model is shown in Fig. 2.
.M, s12, s21, and s22 are t,he scattering parameters of the device

under test. eOO–es~are parameters representing errors in the system.

By making measurements on standards, the error parameters can be
determined. Three reflexion measurements with S,I = o are enowh

to determine eOO,eO,, and en. This can be done with a perfect termin-
ation, a direct and an offset short. A sliding load con simulate the

perfect termination. A transmission measurement with s21 = o

will give edo. ezz and e82 can then be determined if s21 = s12 = 1 and

su = sv~ = O, i.e., a through connection. A thorough description of
the calibration process k given in [2]. Another similar calibration
method is described in [3 1
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Fig. 1. Hardware configuration.
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Fig. 2. Signal flowgraph of s~smm~del (switch S. not included in
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